If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-60=0
a = 16; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·16·(-60)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*16}=\frac{0-16\sqrt{15}}{32} =-\frac{16\sqrt{15}}{32} =-\frac{\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*16}=\frac{0+16\sqrt{15}}{32} =\frac{16\sqrt{15}}{32} =\frac{\sqrt{15}}{2} $
| 13(x+x)=63 | | 13(x+x=63 | | 5^x-2*3^2x-3=135 | | (12x+4)+(11x+8)=180 | | 4=x+27/6 | | 45^x=135^3 | | 2+1/4x=7 | | -15=b-18 | | 19=r+19 | | 1.4/x=1.1 | | X=2x+4+8x | | -7w+39=-5(w-9) | | 9x=4=40 | | 5^(x-1)+5^(-x)=6/5 | | -7(w+1)=3w+3 | | 2x+26=-6(x-7) | | 3x+4=9x8- | | 4x+8x-13=10x-26-1 | | -14=-4m+( | | 3x+5/2x+6=4 | | 10+5x=-3 | | _9(w-5)=-7w+43 | | r^2+4r+4=3 | | -6v-10=-2(v-9) | | 9x+4=81+2x | | 7x²-4x=-5 | | N2-n=56 | | -6v-10=-2(v-9 | | h=3+10/11.25 | | 4(x-3)+3x=3(x+2)+5 | | 4(x-3)+3x=3(x¿2)+5 | | 6x+16=3×-20 |